首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29989篇
  免费   4018篇
  国内免费   1498篇
电工技术   891篇
综合类   1726篇
化学工业   6784篇
金属工艺   5676篇
机械仪表   2017篇
建筑科学   1341篇
矿业工程   1037篇
能源动力   986篇
轻工业   1210篇
水利工程   326篇
石油天然气   825篇
武器工业   246篇
无线电   3049篇
一般工业技术   5733篇
冶金工业   2754篇
原子能技术   310篇
自动化技术   594篇
  2024年   61篇
  2023年   901篇
  2022年   844篇
  2021年   1222篇
  2020年   1310篇
  2019年   1280篇
  2018年   1010篇
  2017年   1201篇
  2016年   1121篇
  2015年   1104篇
  2014年   1596篇
  2013年   1917篇
  2012年   1888篇
  2011年   1939篇
  2010年   1432篇
  2009年   1560篇
  2008年   1379篇
  2007年   1833篇
  2006年   1808篇
  2005年   1608篇
  2004年   1302篇
  2003年   1308篇
  2002年   1038篇
  2001年   866篇
  2000年   775篇
  1999年   593篇
  1998年   485篇
  1997年   359篇
  1996年   361篇
  1995年   286篇
  1994年   242篇
  1993年   191篇
  1992年   146篇
  1991年   125篇
  1990年   97篇
  1989年   92篇
  1988年   53篇
  1987年   35篇
  1986年   20篇
  1985年   24篇
  1984年   23篇
  1983年   23篇
  1982年   16篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1975年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
3.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
4.
5.
孙咸 《焊管》2022,45(5):22-35
综述了铁素体与铁素体异种金属焊缝(dissimilar metal welds,DMWs)接头界面组织及其影响。结果表明,在焊后热处理或运行温度下的铁素体钢DMWs接头的不均匀界面组织中,通常会形成脱碳层和增碳层。在铁素体钢DMWs焊接接头界面组织影响因素中,焊缝金属的化学成分有重要影响;焊后热处理规范(温度和时间)、工作温度下运行时间的影响较为突出;焊接工艺参数的影响亦不可忽略。异种钢接头界面处近缝区裂纹的产生,以及接头的蠕变强度随Larson Miller 参数增大而下降等不利影响,均为异种钢界面碳迁移行为所导致。焊缝成分控制法是接头界面组织控制或改善的必要条件,而脱碳层部位转移法能有效防止裂纹发生,亦是接头安全运行的重要工艺措施之一。  相似文献   
6.
《Ceramics International》2022,48(16):23002-23015
Undoped, doped and co-doped vertically aligned ZnO nanorods (NRs) are synthesized using sonicated sol-gel immersion method. A significant variation in structural, morphological, optical and photoconductivity properties of ZnO NRs after incorporation of transition metal ions (Fe or/and Ag) is obtained. XRD analysis revealed that incorporation of Fe ameliorates while that of Ag deteriorates the c-axis growth of NRs. The diameter of the NRs is tuned from 236 nm to 103 nm. The Fe-doped ZnO NRs exhibit significantly thinner diameter, longer length, and highest aspect ratio. The doping and co-doping reduces the optical band gap of ZnO by 20 meV and 10 meV respectively. A reduction in near band edge emission whereas enhancement in defect-related-green-emission is obtained. Noticeable enhancement in the light harvesting efficiency and significant quenching of the persistent photoconductivity is obtained by co-doping.  相似文献   
7.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
8.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
9.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
10.
The role of starch aerogel (St-AG) and carboxymethyl cellulose (CMC) as biolgical active compounds, when they subjected for complexation with metal ions, is assessed in this work. The complexation is carried out with palladium(II) and copper(II) ions, in solid state. Different tools of analysis are carried out to characterize and elucidate the structures of these complexes, namely: elemental analysis, IR, thermal analysis, magnetic measurement and molar conductance techniques. All synthesized complexes are formed with 1:2 (metal:ligand) stoichiometry except the case of aerogel starch 1:1 (Pd:starch). All isolated complexes show a satisfactory cytotoxic effect results against colon cancer cell lines HCT11. Additionally, these complexes are screened for their antibacterial activities against two types of Gram positive and negative bacteria. Molecular docking investigation confirmed the cytotoxicity and antibacterial results. Proton–ligands association constants and their complex formation constants with some bivalent metal ions, using potentiometric method show that the complexes formed in solution have a stoichiometry of 1:1 [metal:ligand]. The effects of metal ion, ionic radius, electronegativity and nature of ligand on the formation constants are discussed. The formation constants of the complexes with 3D transition metals followed the order Mn2+ < Co2+ < Ni2+ < Cu2+ > Zn2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号